skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weng, Monica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In contrast to phosphine oxides and arsine oxides, which are common and exist as stable monomeric species featuring the corresponding pnictoryl functional group (Pn=O/Pn+–O; Pn = P, As), stibine oxides are generally polymeric, and the properties of the unperturbed stiboryl group (Sb=O/Sb+–O) remain unexplored. We now report the isolation of the monomeric stibine oxide, Dipp3SbO (where Dipp = 2,6-diisopropylphenyl). Spectroscopic, crystallographic and computational studies provide insight into the nature of the Sb=O/Sb+–Obond. Moreover, isolation of Dipp3SbO allows the chemistry of the stiboryl group to be explored. Here we show that Dipp3SbO can act as a Brønsted base, a hydrogen-bond acceptor and a transition-metal ligand, in addition engaging in 1,2-addition, O-for-F2exchange and O-atom transfer. In all cases, the reactivity of Dipp3SbO differed from that of the lighter congeners Dipp3AsO and Dipp3PO. 
    more » « less